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The ability to predict the link travel times is a necessary requirement for
most intelligent transportation systems (ITS) applications such as route
guidance systems. In an urban traffic environment, these travel times are
dynamic and stochastic and should be modeled as such, especially dur-
ing incident conditions. In contrast to traditional deterministic incident
delay models, the model presented explicitly considers the stochastic
attributes of incident duration. This new model can be used for predict-
ing the delay that a vehicle would experience as it travels through 
nonrecurring congestion brought about by an incident. The model is
operational in the sense that it does not require significant data and com-
putational abilities beyond that which is traditionally used and can be
used within traffic models or within actual ITS implementations. A
mixed discrete and continuous vehicle-delay model is first derived and
estimators of the mean and variance of vehicle delay are identified. 
A sensitivity analysis subsequently is performed, and a method for
updating the estimated delay as new information becomes available is
provided.

The estimation and prediction of link travel times in a road traffic
network are critical for many intelligent transportation systems
(ITS) applications such as route guidance systems (RGS) and free-
way traffic management systems. The common objective of these
systems is to provide information necessary to help individual driv-
ers identify optimal routes based on real-time information on current
traffic conditions. To identify these optimal routes, the travel times
on links for the future time periods when the vehicle is expected to
traverse the link are required. In an urban traffic environment these
link travel times should be modeled as dynamic and stochastic, par-
ticularly during incident conditions.

Traditionally, traffic delay due to incidents, referred to in this
paper as incident delay, is estimated using a deterministic queueing
model that assumes that the traffic arrival rate, capacity reduction,
and incident duration can be identified exactly. This approach may
be adequate for after-incident evaluation, for which information on
the traffic volume and incident situation is readily available; how-
ever, it is inappropriate for prediction of incident delay in real-time
applications such as dynamic RGS because the only information
typically available is the time when an incident occurs (or is
detected), the current status of the incident (removed or not, reduced
capacity), and the link demand volume. In real-time situations, the
incident duration is unknown. Therefore, incident delay is best mod-
eled by a random variable that represents the stochastic characteris-
tics associated with the incident rather than by using a deterministic
value. Another potential drawback to using a deterministic model of
incident duration in real-time situations is that the variance of inci-
dent delay is ignored, although it is clearly significant for many ITS

applications (1). The objective of this paper is to develop an incident
delay estimation model that will consider exactly the randomness of
incident duration.

An overview of existing methods for estimation and prediction of
incident delay is presented first. A stochastic model is then devel-
oped to estimate the probability distribution of incident delay, from
which the mean and variance of incident delay are derived. An
example incident is created and used to demonstrate the perfor-
mance of the new model. Sensitivity analyses of the estimation error
of estimated incident delay and the variance of incident delay as a
function of the incident duration variance also are performed.
Finally, how real-time information can be incorporated into the
estimation of incident delay is examined.

OVERVIEW OF INCIDENT DELAY 
ESTIMATION METHODS

Most of the existing incident delay estimation methods focus on
total incident delay caused by incidents, for example, the methods
of Chow (2), the Highway Capacity Manual(3), Wirasinghe (4),
Morales (5), and Al-Deek et al. (6). These methods are intended
only for after-incident evaluation, and therefore information on the
traffic volume and incident situation is assumed known.

Messer et al. (7) developed a method for predicting the travel
time required to traverse a freeway segment that is experiencing
incident congestion. The model was developed on the basis 
of shock-wave theory for use in the operation and control of vari-
able message signs. In their research it was assumed that all of the
inputs were known a priori, and consequently the models may be
considered deterministic.

The rapid development of the ITS field in the last decade has
spurred research in this area with various link travel-time estima-
tion and prediction methods having been proposed for demonstra-
tion ITS projects and simulation studies. Hoffman and Janko 
(8) developed a link travel-time estimation and prediction method
that has been used in the ALI-SCOUT system. In their approach
the link travel time is predicted by scaling the historical travel time
on the basis of current detected link travel time. Koutsopoulos and
Xu (9) presented an approach based on information-discounting
theory as an attempt to improve on Hoffman’s approach. In the
ADVANCE project (10), the proposed link travel-time estimation
method treats the incident-absent and incident-present situations
separately and historical link travel-time is used for calculating
vehicle routes.

It is important to note that all of these methods are fundamentally
heuristic in that they tend to disregard the patterns that develop
during incident congestion. For example, incident delay tends to
have a build-up period and a decline period. Therefore, techniques
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that simply use a scaling factor may result in overestimation or
underestimation of the actual link travel time, and consequently the
corresponding RGS may provide suboptimal routes to their guided
vehicles during the incident period.

Conversely, numerous simulation studies have been conducted to
evaluate the potential benefits of RGS. One of the most essential
components of these simulation models is the link travel-time model,
which is used to estimate the link travel time for use in route calcu-
lation. Koutsopoulos and Yablonski (11) presented a theoretical link
travel-time estimation model in which incident delay is estimated by
a deterministic model. Although in their study the incident and its
attributes (reduced capacity and incident duration) are randomly
generated, this information is assumed to be known and is used
directly for routing. Al-Deek and Kanafani (12) evaluated the bene-
fits of an RGS specifically in the case of incident congestion. In their
model, the incident situation also is assumed to be deterministic, and
a deterministic queueing model is then used to estimate the queue-
ing delay. All these simulation applications assume an advanced
knowledge about the incident situation and then guide the vehicles
on the basis of this information. However, in a real-time operational
situation the evolution of an incident situation cannot be predicted
exactly and the use of such extra information may result in overesti-
mation of the benefits of an RGS. This research examines the situa-
tion in which an incident has been detected and develops a real-time
estimation of the incident delay distribution pattern that a vehicle
would experience if it were to travel through the incident location at
some future time.

DYNAMIC AND STOCHASTIC INCIDENT
DELAY MODEL

Assumptions and Notation

Many factors affect the delay a vehicle experiences as a result of an
incident. These include incident severity (capacity reduction), inci-
dent duration, arrival pattern, traffic volume, and the future time
when the vehicle arrives at the incident location. In a real-time
environment all of these factors are random variables, which makes
incident delay modeling a complex process.

The approach adopted in this paper is to model incident duration
as a random variable within a traditional deterministic queueing
model approach. A queueing diagram is presented in Figure 1 that
shows the cumulative vehicle arrivals and vehicle departures before
and after the incident is cleared. The incident occurs at time T* and
lasts for D* amount of time. It is assumed that the traffic arrival rate,
denoted as q [passenger car units/hour (pcu/hr)], is constant and
known. This value is represented by the slope of the cumulative
arrival function. The nonincident capacity, denoted as c (pcu/hr),
and incident capacity, denoted as c* (pcu/hr), also are assumed
known and constant. These are represented by the slope of the
cumulative departure curve before the incident is cleared (c*) and
after the incident is cleared (c).

The incident duration, D*, is modeled as a random variable with
a known probability density function (PDF) and is denoted by fD*(x).
It is anticipated that PDF will be developed on the basis of histori-
cal data. For example, it has been found that incident duration fol-
lows a lognormal distribution (13,14), and this fact will be explored
further in a later section. It also is assumed that when the incident is
removed and the link capacity returns to the nonincident value (c),
the link travel-time prediction problem reverts to one that may be
handled using traditional, deterministic methods. The variable T0

presented in Figure 1 represents the current time To or the time the
estimation is made. For the present it will be assumed that To and T*
are equivalent. Ta is the estimated time of arrival on the link and is
assumed fixed in this analysis. The parameter da represents the inci-
dent delay experienced by a vehicle that arrives at the incident spot
at time Ta. It is a random variable and its derivation will be the focus
of the following sections. Note that there are essentially two time
periods of interest. The first is when the incident occurs and vehi-
cles begin to form a queue at the rate of q – c*. The second is when
the incident clears and the queued vehicles dissipate at a rate of c.

Probability Distribution of Incident Delay

The probability distribution of the incident delay of a given vehicle
(da) depends on the probability distribution pattern of the incident
duration and the time the vehicle arrives at the link. The relationship
between the two variables can be established by using standard 

FIGURE 1 Queueing model of incident delay and related parameters.
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incident delay formulas. Essentially, when a vehicle arrives at the
link at time Ta, three delay regimes may apply: The vehicle can pro-
ceed through without delay, it can experience a maximum delay, or
it can experience a delay somewhere between these two extremes.
These three regimes and their associated mathematical formulations
will be discussed in the following sections.

No-Delay Regime

In the no-delay regime the vehicle arrives after the incident has been
cleared and the associated queue has been dissipated. Consequently,
the vehicle does not experience any delay. As indicated in Figure 1,
T2 is a random variable that represents the time when the incident is
cleared and the associated queue has dissipated. Its value is a func-
tion of the incident duration, the arrival rate, the capacity, and the
adjusted capacity. T2 may be calculated using standard queueing
theory as presented in Equation 1.

Note that T2 is a random variable because the incident duration also
is a random variable. The probability that the vehicle delay equals
zero is simply the probability that Ta is equal to or greater than T2. The
incident duration that makes the arrival time of an individual vehicle
coincident with the time when the incident is cleared (i.e., Ta = T2) is
denoted by D1. It can be derived from Equation 1 as follows:

It is assumed that the arrival time is fixed and consequently that
D1 is a deterministic value as well. D1 represents the longest incident
duration that will result in zero delay to a vehicle that arrives at time
Ta. The probability that the vehicle will have no delay is equivalent
to the incident duration’s being less than D1:

P1 may be calculated by calculating the appropriate area of the lower
tail of the incident duration PDF:

This is illustrated in Figure 2.

Fixed-Delay Regime

The second regime occurs when the vehicle arrives at the incident
location at time Ta where the incident queue (a) has not dissipated,
and (b) will not be dissipated until after the vehicle traverses the
link. In this situation the queue dissipates at a rate of c* and con-
sequently the vehicle experiences the maximum delay (for a vehi-
cle arriving at time Ta). T1 represents the minimum time at which
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the maximum delay occurs. It can be represented as a function of
the reduced capacity, arrival rate, and incident duration D*:

D2 represents the incident duration that makes the arrival time of
an individual vehicle (Ta) coincident with the time when a maxi-
mum delay occurs (i.e., Ta = T1). That is, if the incident duration is
larger than D2, then T1 will be greater than Ta and the vehicle will
experience the maximum delay. The functional form of D2 is

The parameter dm represents the maximum possible incident
delay and is a function of (a) the reduced capacity, (b) the differ-
ence in time between the start of the incident and the time of arrival
at the link, and (c) the queue dissipation rate. It may be calculated
as follows:

For a given Ta, if the incident duration is greater than D2, the vehi-
cle delay Da is equivalent to dm. The probability that delay will be
equal to dm is expressed mathematically as

P2 (Figure 2) is the probability that the incident duration is greater
than D2 and is represented by the upper tail of the incident duration
PDF as follows:

Variable-Delay Regime

The third regime occurs when the vehicle arrives at the link and either
(a) the incident has been cleared but some portion of the queue
remains or (b) the incident has not been cleared but will be cleared
before the vehicle exits the link. In this situation, the dissipation rate

P P D D f x dxD

D

2 2

2

9= >
∞

∫( * ) ( ) ( )*=

P D d P D
q

c
T T

P D D

P

a m a( ) *
*

( *)

( * ) ( )

= = −

=
=

≥





≥ 2

2

8

d
q c

c
T Tm a= − ( −*

*
*) ( )z 7

D
q

c
T Ta2 6=

*
*) ( )( −

T T D
c

q
1 5= * *)

*
( )+ (

FIGURE 2 Probability density function of incident duration.
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of the standing queue is some combination of c and c*, and conse-
quently the queue delay will lie between the previous two cases—
that is, between zero and the maximum delay dm. The delay also
will be dependent on the incident duration and may be expressed
mathematically as

Equation 10 is valid for D1 < D* < D2 and may be written as the
following inequality by using Equations 2 and 6:

The relationship between da and D* is given by Equation 10
and therefore the PDF of da over the range zero to dm may be
calculated as

Note that to identify the probability of a given vehicle delay, the
function in Equation 12 would have to be integrated over the
appropriate range.

P3 is the probability that the incident duration is greater than D1

and less than D2 and may be calculated by subtracting the results of
Equations 4 and 10 from 1.0 as follows:

Note that Equation 13 simply represents the probability that the
delay experienced will be neither zero nor dm. Because the PDF of
the incident duration (D*) is known, P3 also could have been
calculated by integrating Equation 12 over the limits D1 and D2.

Mean and Variance of Incident Delay

It was demonstrated in the previous section that incident delay da

may be modeled as a mixed discrete and continuous random
variable. The two extreme mass points are calculated by using
Equations 4 and 9, and the PDF is calculated by using Equation 12.
Figure 3 schematically illustrates the distribution pattern of the inci-
dent delay. Obviously, the PDF of incident duration for a given
application will be dependent on the PDF of the incident delay.

Although this derivation is useful in and of itself, for the major-
ity of real applications it is the first moment, or mean, of the incident
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delay distribution that is more commonly used. The vehicle-routing
algorithms in RGS tend to use mean values exclusively, although
the use of a measure of dispersion (i.e., variance) has been advo-
cated (15,16). To date, there have been no large-scale tests that have
attempted to use the PDF distribution within the route-selection
optimization process.

The general formula for the mathematical expectation of the
discrete and continuous function da is

Equation 14 may be transformed into Equation 15 where D12 is the
conditional expectation of the incident duration and is defined in
Equation 16. D12 is simply a truncated expectation of the incident
duration between D1 and D2.

where

The variance may be calculated by

where

By using Equations 3, 8, and 13, Equation 18 can be rewritten as

V12 is the conditional expectation of the squared incident duration,
which is defined as follows:

EXAMPLE PROBLEM

Expected Incident Delay

Incident delay traditionally is estimated by using a deterministic
model that assumes that the attributes of an incident (capacity reduc-
tion, duration) are known or can be estimated exactly. If the average
incident duration used is µ*, the incident delay (Da) is calculated by
using Equation 21, which is simply the mathematical relationships
developed in an earlier section with the random variable D*
replaced by its mean µ*.
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FIGURE 3 Mixed PMF and PDF of incident delay.
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FIGURE 4 Estimation of expected incident delay, deterministic
model versus stochastic model: (a) SD = 0 min; (b) SD = 15 min;
(c) SD = 30 min.

Apart from the fact that the deterministic model does not provide
information on the incident variation, it also will generate a biased
estimate of the mean incident delay as in Equations 14 and 19. This
section provides a numerical example to demonstrate the estimation
bias of the deterministic model and its sensitivity to the variation of
the incident duration.

Assume a unidirectional, two-lane highway with capacity equal to
3,600 pcu/hr. An accident is detected on the road, which reduces the
highway capacity to 1,800 pcu/hr. The average traffic volume under
normal traffic-flow conditions during this time period is estimated to
be 3,000 pcu/hr, among which approximately 500 pcu/hr are assumed
to divert to other routes because of the incident. Furthermore, it is
assumed that the incident duration is lognormally distributed with a
mean incident duration of 30 min and that the standard deviation can
range from 0 to 30 min.

The delay caused by the incident, calculated by using Equation 15,
as a function of the arrival time at the link is illustrated in Figure 4 
for different standard deviations. From Figure 4, it can be observed
that, as expected, the mean delays estimated by both models are
exactly the same if there is no variation in the incident duration.
However, as the variation of the incident duration increases, the
deterministic model may overestimate or underestimate the incident
delay. For example, if the standard deviation of the incident dura-
tion is 30 min [Figure 4(c)], the deterministic model would overes-
timate the expected incident delay by approximately 50 percent for
a vehicle that arrives at the link 20 min after the incident occurs.
Conversely, if the vehicle arrives at the link 40 min after the inci-
dent, the deterministic model would underestimate the expected
incident delay by approximately 50 percent. In addition, the deter-
ministic model would predict no delay for a vehicle arriving at
50 min. This result clearly would be undesirable for an actual RGS.

Figure 5 illustrates the relationship between the maximum over-
estimation error and underestimation error as a function of the stan-
dard deviation of the incident duration. The estimation error is
defined as the ratio of the difference in the expected delays estimated
by the deterministic and stochastic models to the expected delay by
the stochastic model. As given in Figure 5, the estimation error is
proportional (and approximately linear) to the standard deviation of
the incident duration.

Variance of Incident Delay

As with the expected length of incident delay, the variance of incident
delay is dependent on the standard deviation of the incident duration.
Figure 6 illustrates the standard deviation of the incident delay as a
function of the arrival time at the incident location under different
standard deviations of the incident duration. The expected length of
the incident delay also is given in Figure 6. As expected, the larger
the variation of the incident duration, the larger the variance of the
incident delay.

From Figure 6 it can be seen that there is a large amount of vari-
ation in the average incident delay and that this variation is more sig-
nificant for the trips arriving after the expected incident duration
time. For example, when the standard deviation of the incident dura-
tion is greater than 15 min, the coefficient of variation of the inci-
dent delay for trips arriving after the expected incident duration
(30 min) has values larger than 2.0.

Another fact that can be observed from Figure 5 is that, although
the expected incident delay is small when a vehicle arrives around
the expected incident-clearance period, the variation of the incident
delay could be very large. As illustrated in Figure 6(c), when the

arrival time is 80 min after the occurrence of the incident, the
expected delay is approximately 2 min and the standard deviation
about this estimate is approximately 6 min. One implication of this
is that a routing decision based on the average travel time would
provide a route with a higher order of risk of being delayed.

INCIDENT DELAY ESTIMATION WITH 
REAL-TIME INFORMATION

As discussed in previous sections, one of the major pieces of infor-
mation required for estimating the incident delay is the incident
duration distribution. It can be expected that the incident duration



will be a function of the incident managing capability of the local
authority, the incident location, and the incident severity among
other factors. However, it still is feasible to establish location-
specific distribution functions based on historical data (13,9). In
addition, the information on the incident status (i.e., whether it has
been removed) also may be available. In an ITS context this infor-
mation may be managed by a traffic management center (TMC). The
following sections focus on how to update the probability distribu-
tion of the incident duration and how to apply this updated PDF to
improve the incident-delay estimation model developed earlier.

Prior Probability Distribution of Incident Duration

Previous theoretical and empirical work (13,9) has shown that the
incident duration typically has a lognormal distribution. This
research therefore assumes that the incident duration is lognormally
distributed and its distribution can be established and categorized if
necessary. These incident-duration distributions can be considered
as prior knowledge on the incident duration. If the mean of the nat-
ural logarithmic of the incident duration [ln(D*)] is λ and the stan-
dard deviation of ln(D*) is ξ, then ln(D*) is N{ λ, ξ} with density
function noted as f ′D*(x).

Posterior Probability Distribution of Incident Duration

Assume that the TMC at the current time (T0) receives new infor-
mation showing that an incident still has not been cleared since its
occurrence at time T*. The implication of this information is that the
incident duration must be longer than (T0 – T*). Therefore, the prob-
ability distribution of the incident duration should be modified to
take into account this new information. The modified PDF of the
incident duration, posterior PDF [f ″D* (x)], can be obtained by apply-
ing Bayesian theory:

where

L(x) = the likelihood function of the observed output, which is

′′ ′f x k L x f xD D* *( ) ( ) ( ) ( )= z z 22
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FIGURE 5 Estimation error of incident delay by deterministic
model.

k = a constant defined as follows:

Figure 7 schematically illustrates the relationship between the
prior PDF, posterior PDF, and the likelihood function. It should be
noted that the above method also can be extended to incorporate
other types of information on the incident situation such as an esti-
mation of incident duration from an emergency vehicle operator or
police officer.
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FIGURE 6 Estimation of incident delay, mean and standard
deviation: (a) SD = 0 min; (b) SD = 15 min; (c) SD = 30 min.



Fu and Rilett Paper No. 970637 105

FIGURE 7 Prior and posterior distribution function of incident
duration.

CONCLUDING REMARKS

This paper developed a dynamic and stochastic model for predict-
ing the delay that a vehicle would experience traveling through an
incident location. In contrast to the traditional deterministic models,
the new model explicitly considers the stochastic attribute of the
incident duration. The models developed in this paper do not
require significant additional data or computational requirements
over traditional methods and therefore they may readily be adopted
for ITS applications or simulation studies. The major findings and
conclusions are summarized as follows:

1. It was found that a deterministic model may overestimate or
underestimate the expected incident delay, depending on when the
vehicle arrives at the incident location. The maximum estimation
error is proportional to the standard deviation of the incident duration.

2. Under certain circumstances the incident delay has been
shown to have a high variance even when the expected delay is low.
The maximum variance occurs much later than when the time of the
maximum expected delay occurs.

3. The new model also can use the updated information on the
incident situation. This is done by modifying the PDF of the incident
duration based on Bayesian theory.

Further research will focus on the following issues:

1. Refinement of the proposed method by modeling explicitly the
dynamic and stochastic nature of the traffic volume. This addition
to the model is important when the incident occurs during peak time
periods and the incident duration is such that the time variation of
the traffic volume is not negligible.

2. Development of new estimation methods using fuzzy logic the-
ory. It is believed that fuzzy logic may be an appropriate approach
to better use real-time information, which cannot be considered
deterministic for most incident situations.

3. Development of a methodology that transportation agencies
can use to estimate the PDF of a given incident at a given location
in real time. While the model developed in this paper is applicable
for any PDF, a successful implementation will be dependent on the
ability of the transportation agency to classify the PDF of the inci-
dent in real time. Alternatively, if the shape of the PDF is known 

a priori then the problem simplifies to one of identifying the para-
meters of the PDF. Regardless, some type of statistical analysis of
the incident data currently being collected by transportation man-
agement centers will be required.
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